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ABSTRACT
The problem of imputing missing values in time series data has
been addressed in many studies that proposed algorithms deemed
to be robust for recovering missing values. Despite the good per-
formance of such algorithms, there is usually a lack of theoretical
guarantee on their performance. A recently proposed approach to
time series imputation uses matrix estimation methods to recover
missing values after transforming the time series into a matrix.
This approach has exhibited superior performance and provides
strong theoretical guarantees of performance for a large class of
time series with random missing entries with a certain probability.
In this study, we tackle the particular case of missing entries in a
time series that form long blocks of consecutive values of differ-
ent lengths, and we identify the effect of such scenarios, involving
missing values, on the accuracy of matrix estimation algorithms
for time series imputation. As the main contribution of this work,
we propose an extension to the matrix estimation approach to time
series imputation by introducing an adaptive algorithm for select-
ing the shape of the matrix based on the length of consecutive
missing values in the time series. The performance of the proposed
algorithm was verified by testing it on synthetic datasets consisting
of a mixture of autoregressive process, finite sum of harmonics, and
a linear trend, as well as real world datasets. Our empirical study
shows that the proposed adaptive approach enhances the accuracy
of imputation compared with the choice of a fixed matrix shape
in 89% of the experiments. The improvement in performance is
more significant in missing values scenarios with a more diverse
lengths of consecutive missing values, and the enhancement in the
performance reaches as high as 30%. Furthermore, we demonstrate
that the proposed algorithm outperforms state-of-the-art R-based
imputation algorithms in these experiments.
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1 INTRODUCTION
Data in the form of univariate time series are encountered in a
wide range of domains, such as social sciences, meteorological
observations, the energy industry, and finance. After the data are

measured and recorded, the problem of missing values is usually
inevitable for various reasons. Possible practical scenarios include
sensor malfunction, communication errors, and noise in the data.
The estimation of these missing values is a common challenge when
undertaking time series processing and analysis because algorithms
are usually promised a complete signal. Therefore, the accurate
replacement of the missing data with reasonable values, known as
imputation, is essential for maintaining accuracy when inferring
from and forecasting time series.

In the literature and commonly used statistical tools, many algo-
rithms have been developed to tackle the problem of imputing time
series. However, most algorithms that perform well are developed
to impute multivariate time series, where additional attributes are
employed to enhance imputation. Only a limited number of studies
have focused on developing methods to address the special case of
imputing univariate time series. Classical methods for imputing uni-
variate time series can be divided into three categories [16]: simple
statistical measures that do not use the characteristics of the time
series, such as the mean, median, and the mode; univariate time
series algorithms that consider the nature of the time series, such
as arithmetic smoothing, linear interpolation, and imputation us-
ing structural time series models such as autoregressive integrated
moving average (ARIMA) and seasonal ARIMA models; and multi-
variate time series algorithms, where for univariate time series lags
or leads are used as the other covariates. Although such algorithms
exhibit good imputation performance in many applications and are
widely accepted in the data science community, they usually lack
theoretical guarantees on their performance.

A recently proposed approach that outperforms standard soft-
ware packages usesmethods ofmatrix estimation to recovermissing
values in univariate time series [1]. This algorithm transforms the
observed time series into a matrix and utilizes well-established
matrix estimation methods to recover missing values. This work
transforms the problem of imputing missing values in a time series
into a matrix estimation problem, and provides strong performance
guarantees of this approach for a large class of time series models
when the time series entries are missing randomly with a certain
probability.



In this work, we revisit the recent approach of imputing time
series using matrix estimation, described in [1], to study its perfor-
mance in the case where the time series suffer from missing data
in the form of blocks of consecutive values of diverse lengths, and
propose a modified algorithm that enhances the accuracy of impu-
tation in such scenarios involving missing values. A compulsory
initial step in approaching the problem of time series imputation
as a matrix estimation problem is to transform the observed time
series into an observation matrix. Our empirical study argues and
shows that the best choice of the shape of the observation matrix
for imputing missing values in a given time series is influenced
by the number of consecutive missing values. It also shows, that
an enhanced imputation performance can be achieved if the shape
of the matrix is selected adaptively based on the number of the
consecutive missing values.

The proposed algorithm clusters blocks of missing values in the
time series based on their lengths and establishes a mapping be-
tween the lengths of the blocks and the best choice of the shape of
the observation matrix. Once this mapping is known, this adaptive
algorithm constructs multiple observation matrices, each with a
unique shape that corresponds to a certain cluster. Each observa-
tion matrix is then used to recover only the missing values in its
corresponding cluster. Figure 1 shows a diagram of the algorithm.

Contributions. Our contributions include the following:

• We study the effect of consecutive missing values in a time
series on choosing the optimal shape of the observation
matrix when the time series is converted into a matrix for
imputation by matrix estimation methods.

• We propose an adaptive approach that extends the algorithm
proposed in [1] for imputing missing values in time series
to address the effect of consecutive missing values.

• We conduct a variety of experiments to assess the accuracy
of the proposed adaptive algorithm. The experiments were
conducted for both synthetic and real world time series, and
the performance of the proposed algorithm was compared
with that of the static imputation method and benchmarked
with the R-based time series imputation package Amelia
II [11]. In these experiments, the adaptive algorithm out-
performed the static algorithm in 89% of the time with an
improvement in the imputation error reaching as high as
30%. The algorithm also outperformed the benchmark pack-
age in most cases with an improvement in the performance
reaching up to 10.9 times.

Organization. In section 2 we survey related work on three rele-
vant topics: time series imputation, matrix completion, and a recent
approach of imputing time series using matrix completion. In sec-
tion 3 we describe the proposed algorithm, starting with transform-
ing the time series into a matrix and performing matrix completion
on the transformed time series, followed by the extension to the
algorithm where an adaptive choice of the shape of the matrix is
introduced. In section 4 we cover the design of the experiment and
the datasets used to test the performance of the algorithm. Sec-
tion 4 also shows the results of the empirical study by comparing
the performance of the algorithm proposed in section 3 to the static
imputation algorithm and with our benchmark R-based imputation

Figure 1: A diagram illustrating the proposed adaptive impu-
tation algorithm for a time series with two missing values
blocks with lengths d1 and d2

package. Lastly, section 5 summarizes and analysis the results of
the empirical study.

2 RELATEDWORK
Imputing missing values in time series data is a popular area of
research where many methods and algorithms have been developed
to solve the problem of missing data and increase the accuracy of
imputation. Examples of methods of time series imputation include
the expectation maximization algorithm [9], an iterative approach
for computing the maximum likelihood of data that can handle
missing values. Hot deck methods are another class of methods
commonly used for imputing missing data. In essence, hot deck
methods involve replacing missing values with randomly selected
similar records using different techniques [2]. One hot deck tech-
nique that has proved superior to others is the k-nearest neighbor
method, in which the imputed value is the average of k records simi-
lar to the missing value according to a certain similarity metric [12].
In addition to developing new methods and algorithms for imput-
ing missing data, considerable effort has been made to address the
accuracy of prevalent methods and mitigate their drawbacks. One
such commonly used method is the multiple imputation method,
which replaces each missing value with two or more values repre-
senting a distribution of likely values and resulting in two or more
completed datasets. Each dataset is then used separately for further
analysis. The multiple imputation method is used to handle bias in
variance in single imputation [21]. Most of these methods have been
summarized and compared in recent comparison studies [10, 17].

It is worth noting that the problem of imputing univariate time
series is considered a special case of the more general imputation
problem. The complexity of imputing a univariate time series arises
from the need to employ temporal dependencies to perform effec-
tive imputations of missing values instead of employing covariates
like in multivariate data. Despite the rich literature on longitudinal
data imputation, methods designed for imputing univariate time
series are limited. The problem of dealing with missing values in
univariate time series is often converted into a multivariate imputa-
tion by introducing lags or leads of the variable as covariates [16].
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In an effort to address the problem of univariate time series
imputation, Walter et al. utilized the box Jenkins techniques, includ-
ing SARIMA and ARIMA, to impute missing values in univariate
non-stationary seasonal time series. They also examined the use of
direct linear regression models to impute missing values. Working
in a similar direction, Chandrasekaran et al. developed the sea-
sonal moving window algorithm to handle missing data in seasonal
time series. The algorithm performs seasonal and trend-related
decompositions using Loess, and deals with each component of the
time series in the imputation step. It linearly interpolates the trend
component and searches through observed data from the seasonal
component to identify the best cyclic pattern to fill in the missing
values [6].

More recently, methods that expand on classical methods and
combine different, well-known techniques to improve accuracy
have been developed. For example, FLk-NN is a method that com-
bines two imputation methods, Fourier transform imputation and
lagged k-nearest neighbor imputation. The average of the esti-
mation provided by these two methods is used as the final esti-
mate of the missing value. This method outperforms commonly
used imputation methods, including MICE [16] and several EM
approaches [18, 22]. Moreover, a recently proposed paper [19] at-
tempted to mitigate the impact of consecutive missing values on
the accuracy of imputation. This involved creating an ensemble of
models based on weighted kNN while using dynamic time warping
(DTW) as the distance measure. This method performs well even
when there is a large number of consecutive missing values, which
is mainly due to the penalty function applied to linear interpolation
preprocessing step as it increases with the number of consecutive
missing values.

This recent development in the field of imputing missing data
also resulted in numerous tools and software packages that imple-
ment various imputation algorithms. The development of tools for
imputation in the statistical environment R prevails in terms of the
number of packages developed. The most popular of these pack-
ages are ones that implement multiple implementation techniques,
such as Amelia that implements expectation maximization with
bootstrapping algorithm [11] and MICE, which implements multi-
ple imputation by chained equations [4]. Many other imputation
techniques have also been implemented in R. Examples include
the Yaimpute packages for KNN imputation [8], mtsdi package
for imputation with expectation maximization [13], and missFor-
est for imputation based on random forest [23]. One of the few
packages that specialize in univariate time series imputation is im-
puteTS [15]. It provides an implementation framework for univari-
ate time series covering several algorithms. ImputeTS implements
four simple imputation methods: last observation carried forward,
missing value imputation by mean value, missing value imputa-
tion by random sample, and replacing missing values by defined
values. It also implements five sophisticated imputation methods:
imputation by linear, spline and stuntman interpolation; imputa-
tion by structural model and ARIMA state space representation
with Kalman smoothing; imputation by seasonal decomposition;
imputation by seasonal splitting; and imputation by simple, linear,
and exponentially weighted moving average.

In a recent paper [1], an algorithm that imputes missing data
through matrix estimation methods was presented. The algorithm

transforms the time series into a matrix and applies matrix estima-
tion on the constructed matrix to impute the missing values. The
algorithm, which establishes strong links between univariate time
series and matrix estimation, is model agnostic, and is applicable to
a wide range of times series models. These include finite sum of har-
monics, linear time-invariant systems, and their additive mixtures.
The authors provided theoretical guarantees of the performance
of this algorithm for both univariate time series imputation and
forecasting. Furthermore, they demonstrated the viability of us-
ing matrix estimation, in particular, the universal singular value
thresholding (USVT) algorithm for imputing univariate time series
through multiple experiments on synthetic and real world datasets.
The results of these experiments show a superior performance of
this algorithm when compared to standard software packages, even
when these packages were aware of the underlying model of the
time series.

The establishment of such a link between imputing univariate
time series and matrix estimation opens the door to applying many
matrix estimation algorithms to recover missing data in time series.
This problem of matrix estimation has received considerable atten-
tion recently owing to its various applications, including collabora-
tive filtering, remote sensing, and computer vision. The takeaway
from these efforts is the ability to reconstruct a matrix from few
noisy entries by a low-rank approximation of the observed data.
Examples of recent work that tackles this problem include an algo-
rithm that uses the concept of local approximation [3]. The relevant
studies have proposed methods that estimate missing values by
determining the data points nearest to the given one in terms of
a specific distance metric, and computing the neighborhood av-
erage to estimate the final estimate. Alternatively, singular value
thresholding has been used extensively for matrix estimation, in-
cluding singular value thresholding (SVT) [5], universal singular
value thresholding [7], SVD-IMPUTE [24], and Soft-Impute [14].
Mazumder et al. [14] compared many major matrix estimation al-
gorithms, including the newly introduced Soft-Impute, SVT, and
MMMF [20].

3 METHODOLOGY
Themethodology used is an extension of that proposed in [1], where
the imputation of missing values in a time series is transformed
into a matrix estimation problem.

3.1 Set-up
An essential initial step in this algorithm is to transform the uni-
variate time series X (t) into an observation matrixM . This trans-
formation process is dependent on parameter L, which denotes the
number of rows in the newly constructed matrix.

(1) Denote the observations of the time series at time t by X (t),
where t ∈ [1,T ].

(2) For a certain L ≥ 1 and N = ⌊T /L⌋ the elementmi j in the
L × N observations matrixM can be expressed as

mi j = X (i + (j − 1)L)

where i ∈ [1,L] and j ∈ [1,N ]

The time series is transformed into a matrix by filling an L × N
matrix with its observations X [1 : NL] column by column.
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3.2 Static Imputation Algorithm
Once the time series has been transformed intomatrixM , the task of
imputing the missing values reduces to a matrix estimation problem.
We use an iterative singular value thresholding (SVT) algorithm
inspired by iterative SVD-Impute described in [24]. The algorithm
performs SVT iteratively to estimate the missing values in matrix
M by performing the following steps:

(1) Define an L×N matrixW with (i, j)th entrywi j and initiate
it as

wi j =

{
mi j ifmi j is observed
0 otherwise

(2) Choose a rank K as the rank of the finally reconstructed ma-
trix and define a small number ϵ as the convergence thresh-
old. Then, in each iteration q ∈ [1,Q],

(a) Select the gradually increasing rank kq defined as

kq =min(2q,K)

(b) Perform singular value decomposition on matrixW

W =
L∑
i=1

siuiv
T
i

(c) Define S as a subset of the singular values of matrixW
such that

S = {i : i ≤ kq }

(d) Reconstruct the reduced rank matrixŴ , whose entries are
ŵi j , as

Ŵ =
∑
i ∈S

siuiv
T
i

(e) Update the entries of matrixW such that

wi j =

{
ŵi j ifmi j is missing
wi j otherwise

(f) The method converges when the mean difference between
the estimated missing values in two consecutive iterations
is less than the threshold ϵ . The last iteration is denoted
by Q .

(3) Declare the estimated complete time series

X (i + (j − 1)L) = wi j

Assumptions and Parameters. The algorithm assumes that the
L × N observation matrix M is constructed with L < N . If L is
selected such that L > N , the algorithm should be applied to the
transpose matrix MT . This algorithm depends on two parameters:
the rank of the final reconstructed matrix K and the number of
rows L of the observation matrix M . It has been shown that the
most effective way of selecting the values of parameters K and L is
through cross-validation.

The choice of parameter L contributes significantly to the error
bound of the estimated matrixW . Theorem 3.1 in the work done
by Agarawal et al. [1], which gives the accuracy of using the SVT
algorithm for imputing time series, suggests that L should be as
large as possible. This iterative SVD algorithm, with a single choice
of L, is herein referred to as the static imputation algorithm.

3.3 Adaptive Imputation Algorithm
One of the main contributions of this paper is the proposal of an
extension to the iterative SVT algorithm to perform it with an
adaptive selection of parameter L. The main motivation for this
adaptive choice is the effect of consecutive missing values on the
optimal shape of the observation matrix.

In the time series X (t), define missing values blocks bu ,u ∈

[1,B] as continuous chains of consecutive missing values, each of
length du , where B is the number of missing blocks. This adaptive
algorithm constructs multiple observation matrices, each with a
unique choice of L, and uses each of these constructed matrices to
impute missing values blocks of similar lengths.

In practice, finding the optimal choice of L for a given number of
consecutive missing values du in a specific time series is performed
empirically for the time series of interest. Artificial masking with
diverse block lengths du is performed on the observed parts of the
time series to map the length of the blocks to the optimal choice
of L. This mapping is then applied to the missing values in the
time series, where the optimal choice of L is used to impute each
block of missing values. The steps below describe the adaptive SVT
algorithm in more detail.

(1) Group the blocks bu into Z clustersψz , z ∈ [1,Z ]. The blocks
are grouped based on block length du such that

ψz = {bu : αz < du < βz }

where αz and βz are positive integers that define the range
of lengths of consecutive missing values du of blocks bu
belonging to each of the z clusters.

(2) Initialize time series X̂0(t) as

X̂0(t) =

{
X (t) if X (t) is observed
0 Otherwise

(3) For each clusterψz
(a) Construct the observationmatrixM(z) from the time series

X̂z−1(t) with number of rows Lz , where Lz is the optimal
choice of number of rows corresponding to βz .

(b) Execute the iterative SVT algorithm on the constructed
observation matrixM(z) to produce the estimated matrix
W (z).

(c) Update the missing values belonging to the blocks in clus-
terψz only such that

X̂z (i+(j−1)Lz ) =

{
w
(z)
i j i f w

(z)
i j ∈ {bu : bu ∈ ψz }

X̂z−1(i + (j − 1)Lz ) Otherwise

(4) Define the final estimated complete time series X̂Z (t) as

X̂Z (i+(j−1)LZ ) =

{
w
(Z )
i j i f X (i + (j − 1)Lz )missinд

X (i + (j − 1)Lz ) Otherwise

4 EXPERIMENTS
To illustrate the use of the adaptive imputation algorithm described
above and test its performance, we conducted experiments on both
synthetically generated and real world time series data. The perfor-
mance was evaluated at different levels of missing values and for
diverse lengths of missing values blocks, and was compared against
that of the static SVT algorithm and benchmarked against AMELIA
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II [11], which is an R-based package that is believed to exhibit ex-
cellent imputation performance. The accuracy of imputation was
measured using the root-mean-square error (RMSE) calculated as

RMSE =

√
1

(1 − p)LN

∑
i ∈Ω

(X̂ (t) − X (t))2

where p is the fraction of observed values in the time series, (1 −
p)LN is the number of missing values in the time series, and Ω =
{i1, i2...i(1−p)NL} is the set of indices of the missing values.

Masking. To select the parameters of the adaptive algorithm and
test its performance, artificial masking was applied to both the
training and testing datasets. Masking was performed by selecting
multiple blocks of various lengths to remove from the time series.
This was performed by first selecting a random index in the time
series to identify the location of the missing value block, and then
drawing the length of the block from a half-normal distribution
with mean zero and variance σ and ceiling the drawn value. In
this experiment, three variances for the distribution of the lengths
of the missing value blocks were selected: 4, 15, and 25. For each
variance, the time series was masked multiple times with different
fraction of observed values ranging from 0.9 to 0.4. The different
variances were chosen to create diverse block lengths to test the
performance for different numbers of consecutive missing values.

Selecting the algorithm’s parameters. Our algorithm takes
into consideration that the length of consecutive missing values can
influence the optimal choice of parameter L. Hence, it is essential
to find the optimal choice of L that corresponds to the different
block lengths before imputing missing values using the adaptive
algorithm. To demonstrate how the optimal choice of parameter L
is influenced by the number of consecutive missing values in a time
series, we created multiple artificial masks each having identically-
sized blocks of consecutive missing values. We then impute each
of these masks using different choices of L and observe the asso-
ciated imputation error. Figure 2 shows how the imputation error
(in RMSE) changes with the different choices of L when imputing 5
different masks with blocks lengths ranging from 1 to 300 consecu-
tive missing values. The figure shows a unique optimal choice of L
for each of the tested block lengths.

In the following experiments, we find the optimal choice of L that
corresponds to each block size d by grouping the missing values
blocks into 10 equal clusters based on their lengths. The missing
values are imputed using different choices of L to select the best
one that yields the minimum error in each of the 10 cluster. Figure 3
shows the mapping between the optimal choice of L and the length
of the blocks d for a given time series. This mapping is then used
in the imputation process when testing the algorithm on the same
time series.

4.1 Synthetic time series experiment
Model of time series. In this experiment we test the performance
of our algorithm in comparison with the static algorithm for a time
series model consisting of mixture of an autoregressive process
(AR) and finite sum of harmonics with a trend component. The
synthetic time series is constructed by first generating signals of

Figure 2: Imputation error in RMSE using different choices
of L for five different lengths of missing value blocks d . The
bold dots in the figure indicate the value of L that results in
the lowest RMSE

Figure 3: Mapping the lengths of consecutivemissing values
blocks d to the corresponding optimal choice of parameter
L

sum of harmonics as

f1(t) =
I∑
i=1

Aisin(2πωi t) + Bicos(2πωi t)

where i is the number of finite harmonics and ωi is the frequency
of the signal. The AR processes are then generated as

f2(t) =
I∑
i=1

αi f (t − 1)
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The two aforementioned signals are mixed, and a linear trend com-
ponent is added as follows:

f (t) = f1(t) + f2(t) + αt

Finally, the synthetic time series X (t) is modeled as mixtures of
signals f (t) with an additive Gaussian noise ϵ(t) with mean zero
and a unit variance.

X (t) = f (t) + ϵ(t)

We generated a distribution of 50 synthetic time series with their
parameters randomly selected. In particular, each time series has
a number of harmonic terms selected uniformly at random from
the range [5, 20], with periods (1/ωi ) ranging from 10 to 30 and
coefficients (Ai ,Bi ) ranging between 0 to 10. The parameters of the
AR process are drawn from the uniform distributionU (0, 1), and are
chosen to ensure the stationarity of the process. The number of lags
is also randomly selected from the uniform distributionU (3, 10).

Imputation. Figure 4 summarizes the performance of the adaptive
algorithm in comparison with the static algorithm for different
fractions of observed values p and three masking variances σ . For
each combination of masking variance and percentage of observed
values we report the median relative improvement in the perfor-
mance (meaured in RMSE) of all 50 time series. It is evident from
Figure 4 that the adaptive algorithm performs better than the static
choice of L in all masking scenarios. The improvement in the per-
formance is more significant at higher masking variances, as the
sizes of missing values blocks become larger and more diverse. The
median improvement reaches 27% for σ = 25. Furthermore, the
adaptive imputation algorithm outperformed the static algorithm
in 89% of all experiments.

Figure 4: Median relative improvement in RMSE between
the adaptive and static algorithms showing a superior per-
formance of the adaptive algorithm in all scenarios of miss-
ing values

4.2 Real world time series experiment
Here, the adaptive algorithm is applied to two real world datasets to
test its performance. In practice, information concerning the model
of the time series, and the type and level of noise in the data are
not easily determined. This experiment was undertaken to test the

performance of the algorithm in such situations. As the true mean
for these time series is not known, we used the observations to
compute the error metric (RMSE).

Figure 5: Hourly electricity demand data

Electricity demand. Figure 5 shows a plot of the hourly electricity
demand dataset that we used in this experiment. Figure 7 shows the
performance in terms of RMSE of the adaptive and static algorithms
as a function of the fraction of observed values for the three choices
of masking variance. The adaptive approach outperformed all static
choices of L at every level of missing values. In Figure 7a, where
the masking variance is 4, the enhancement in accuracy over the
best static choice of L reached as high as 8%. Further improvement
was noticed at higher variances as shown in Figure 7b, where per-
formance was enhanced by up to 18% at σ= 15. The enhancement
was even higher as variance increased to 25 to reach as high as 30%
compared with that of the static algorithm as shown in Figure 7c.
Another noticeable advantage is that the best L in the static method
varies when we change the masking variance and the fraction of
observed values. This illustrates the adaptive method’s resilience
to different scenarios of missing values.

Figure 6: Weekly Google flu search trends data (Brazil)

Google flu search trends data (Brazil). Figure 6 shows a plot
of the Google flu search trends data in Brazil at weekly intervals.
The data exhibited strong seasonality with a period of 52 weeks.
Figure 8 shows that applying the adaptive algorithm to this time
series did not improve imputation performance, and the best choice
of L, which corresponded to the period of the time series, performed
as well as the adaptive algorithm at all levels of missing values.
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(a) Masking variance σ = 4

(b) Masking variance σ = 15

(c) Masking variance σ = 25

Figure 7: Electricity demand data: the performance of the
adaptive imputation algorithm relative to different static
choices of L for different masking variances

(a) Masking variance σ = 4

(b) Masking variance σ = 15

(c) Masking variance σ = 25

Figure 8: Google flu search trend data: the performance
of the adaptive imputation algorithm relative to different
static choices of L for different masking variances
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4.3 Benchmarking
The performance of the proposed adaptive algorithm is bench-
marked with the R imputation package Amelia II [11]. Figure 9
shows the relative improvement in RMSE between the adaptive
algorithm and Amelia for different fractions of observed values p
and three masking variances σ . Positive values (shown in green)
mean that the adaptive algorithm performed better while negative
values (shown in red) show the opposite. Figure 9 shows how the
adaptive algorithm performed better in almost all situations, with
a small exception in the flu time series with a high percentage of
missing values.

In particular, the adaptive algorithm performs 58% to 249% bet-
ter than Amelia when tested one of the aforementioned synthet-
ically generated time series. The improvements are even more
pronounced in the electricity demand data, where the adaptive
algorithm performs 3.4 to 10.9 times better than Amelia.

While the performance of the proposed algorithm is often su-
perior when tested on the flu trend data, it is not always the case.
Specifically, when the fraction of observed values gets below 60%,
our algorithm performs up to 54% worse than Amelia. This is ex-
pected given the few data points in the flu trend time series, as our
model agnostic method needs more data points than methods built
specifically to fit certain models.

5 CONCLUSION
In this paper, we propose an extension to the time series imputation
algorithm developed in [1] that can handle a large number of con-
secutive missing values in the time series by adaptively choosing
the optimal parameters of the algorithm for different lengths of con-
secutive missing values. Using both synthetic and real world data,
we compared the performance of this adaptive approach with the
static choice of the algorithm’s parameters as described in [1]. Our
experimental results suggest that the adaptive approach enhances
the performance of imputation when applied to the specified model
of time series. The experiments on real world data supports this
claim as the algorithm performed significantly better than the static
algorithm on one of the time series. On the other experiment on
real world data, the adaptive algorithm showed no advantages over
the static algorithm. This might be due to the strong seasonality
of the time series which creates a strong correspondence between
the optimal choice of L and its seasonal period. The algorithm was
also compared with the R-based imputation package Amelia and
delivered superior performance at most levels of missing values
and variances. The only exception was when performed on the
Google’s flu search trend data where Amelia performed better in
case of large numbers of missing values.
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